CMEIG Engineering Working Group

National Construction Equipment Convention (NCEC)
Sydney, Australia

16th November, 2018

Presented by

Osama Ali (Caterpillar) and Chris Morley (Hitachi)

the first that they have been been a former to

The Construction & Mining Equipment Industry Group (CMEIG) is a non-profit organisation to represent the construction and mining equipment industry and allied equipment and services on issues impacting on the delivery of business.

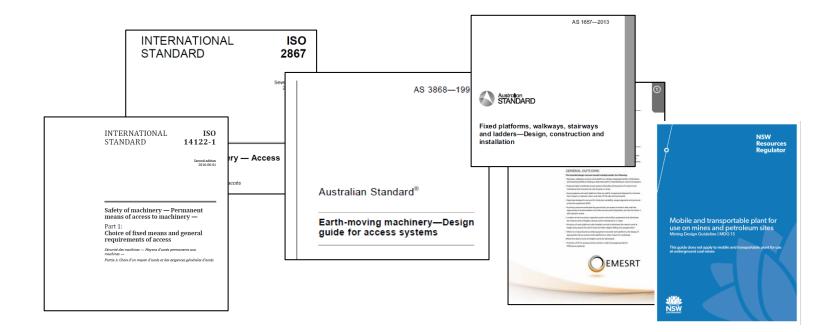
Disclaimer: The Construction and Mining Equipment Industry Group (CMEIG) is a non-profit organisation sponsored by companies involved in the supply of products and services in the construction and mining equipment supply industry in Australia. This presentation has been prepared by members of CMEIG and is distributed by the Association. This information is provided for general reference only and no legal liability can be accepted by the Association or its members for its use. The views of any individual author of the information provided are not intended to represent the views of CMEIG or its members. CMEIG advises that you should seek appropriate specialist advice for your situation.

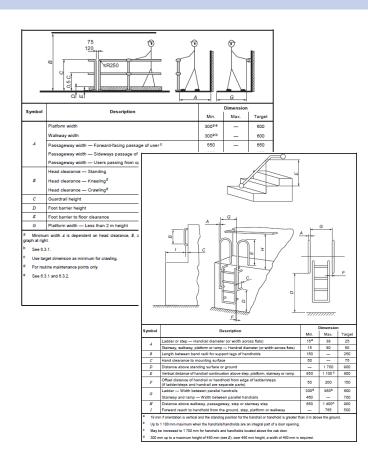
Agenda

- EWG Introduction
- Activity 'snapshot'
 - Standards Development Activities
 - Access systems
 - Rubber tired equipment, in-service brake testing
 - CMEIG Papers
 - Rated Load Measurement for Wheel Loaders
 - Rated Capacity Indicators for Tracked Excavators
- Questions/Comments

Engineering Working Group

- A 'branch' of CMEIG
- Technical SME's from various CMEIG members
- Group aim:
 - Represent the industry on various committees & forums
 - Liaise with regulatory bodies in all States/Territories
 - Promote standards and regulations harmonisation
 - · Advise on technical issues relating to construction and mining equipment
- Publications, presentations, advisory documents, regulatory instruments
 - www.cmeig.com.au/working-groups/engineering

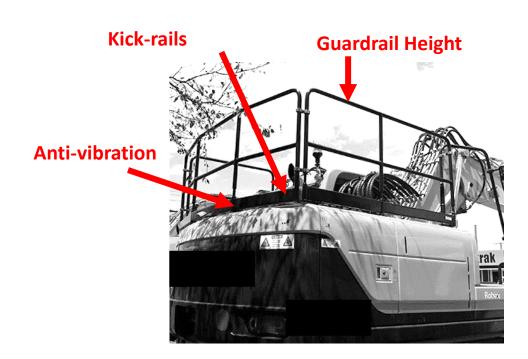


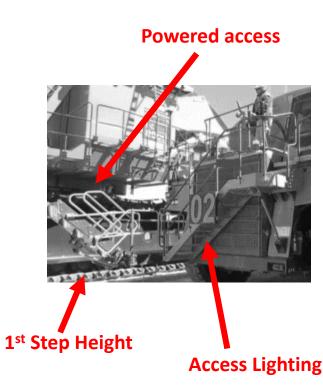


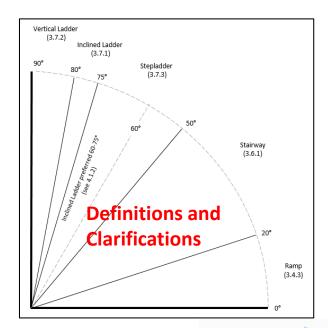
Standards Development Activities

Standards Development - Access Systems

- EMM access to the operator station and routine maintenance
 - Handrails, Guardrails, Steps, Ladders, Doors, Openings etc.
- Burning platform
 - Issue of varying sources of reference currently in Australia

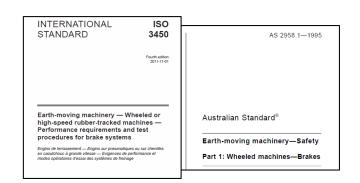


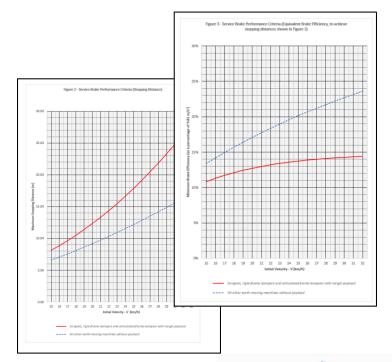




Intent – Additional Clarity for Access Systems Design

- Project underway to re-align and provide design clarity
 - 5-6 Disparate references → 1 document
 - More detailed guidance in specific areas
 - Public comment





Standards Development - Brake Testing

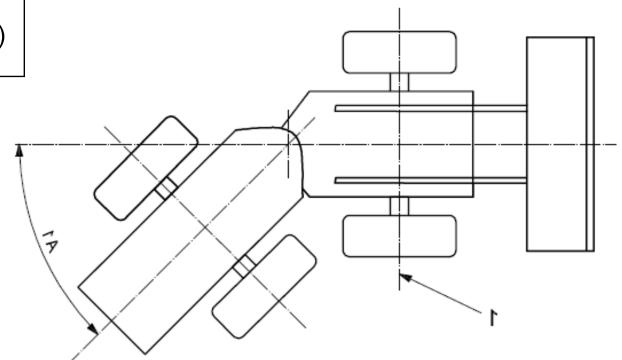
- Existing drivers (in specific applications) for in-service dynamic brake testing
- Limited guidance
 - Extensive sources of real-world variability
 - Vague pass/fail criteria
- Currently a work in progress
 - Re-alignment of similar AS and ISO standards
 - Practicable guidance for in-service brake testing
 - Objective pass/fail criteria

CMEIG Paper Measurement of Rated Load for Wheel Loaders

Different standards

- No current Australian Standard for determining rated load for wheel loaders
- Different international standards, eg.:
 - ISO 14397-1:2007 Earth-moving machinery Loaders and backhoe loaders Part 1: Calculation of rated operating capacity and test method for verifying calculated tipping load
 - ISO 20474-3:2017 Earth moving machinery Safety Part 3: Requirements for loaders
 - EN 474-3:2006 Earth-moving machinery Safety Part 3: Requirements for loaders
 - SAE J1197-2011 Rated Operating Load for Loaders Equipped with Log or Material Forks without Vertical Mast
 - (Withdrawn) SAE J818-2007 (Rated Operating Load for Loaders)

General Principles


Rated load usually determined by:

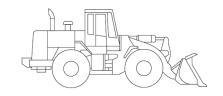
m_{tip} k

(tipping load*) × (stability factor)

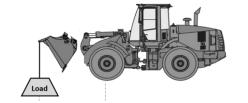
*under certain conditions

- Configuration most likely to tip
- Include:
 - Mass of load and material density
 - Location of CofG
 - Mass of attachment and coupler
- Variables and conditions, for example:
 - Ground condition (firm and level, rough terrain)
 - Maximum speed of travel
 - Tyre compressibility (rigid vs flexible)

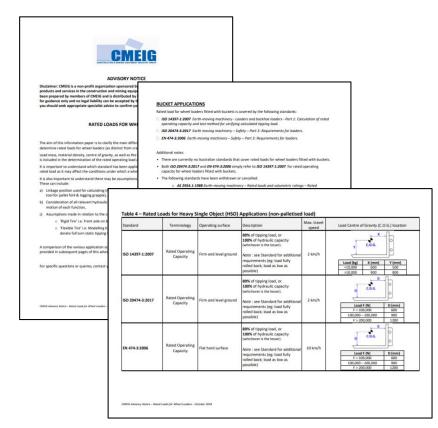
Example – Fork Applications


Standard	Operating surface	Factor	Max. travel speed
ISO 14397-1:2007	Hard substantially smooth and level	50% tipping load, or 100% hyd capacity	15 km/h
ISO 20474-3:2017	Rough terrain	60% tipping load, or 100% of hyd capacity	15 km/h
	Firm and level ground	80% tipping load, or 100% of hyd capacity	15 km/h
EN 474-3:2006	Rough terrain	60% tipping load, or 100% of hyd capacity	15 km/h
	Firm and level ground	80% tipping load, or 100% of hyd capacity	15 km/h
SAE J1197-2011	Hard, moderately smooth and level	50% tipping load, or 100% hyd capacity	6 km/h

Specific Applications Addressed

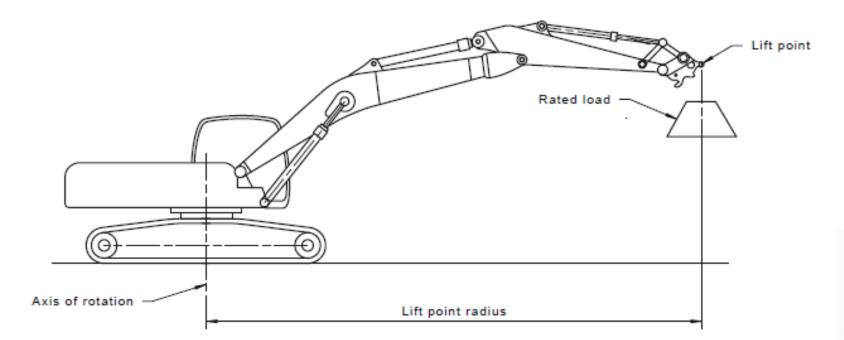

- Bucket applications
- Fork applications
- Log handling applications
- Heavy single object
 - (non palletised) applications
- Lifting freely suspended loads
 - (Australian Standard exists)

		0 11					
Standard	Terminology	Operating surface	Description	Max. travel speed	Load Centre of Gra	vity (C.O.G.) location	
ISO 14397-1:2007 Log Handling is not specifically mentioned.	Rated Operating Capacity	Hard, substantially smooth and level	50% of tipping load, or 100% of hydraulic capacity (whichever is the lesser).	15 km/h	Grab tynes must be horizontal with clamp closed L = grab tyne length	D=L/2	
	Rated Operating Capacity	Rough terrain	75% of tipping load, or 100% of hydraulic capacity (whichever is the lesser).	45.1 %	Grab tynes must be horizontal with clamp closed		
ISO 20474-3:2017		Firm and level ground	85% of tipping load, or 100% of hydraulic capacity (whichever is the lesser).	15 km/h	L = grab tyne length	D=L/2	
	Rated Operating	Rough terrain	75% of tipping load, or 100% of hydraulic capacity (whichever is the lesser).		Grab tynes must be horizontal with clamp closed		
EN 474-3:2006	Capacity	100% of hydraulic capacity	L = grab tyne length	D=L/2			
SAE J1197:2011	Rated Operating Load	Hard, moderately smooth and level	50% of tipping load, or 100% of hydraulic capacity (whichever is the lesser).	6 km/h	Grab tynes must be horizontal with clamp closed	•	
					L = grab tyne length	D=L/2	



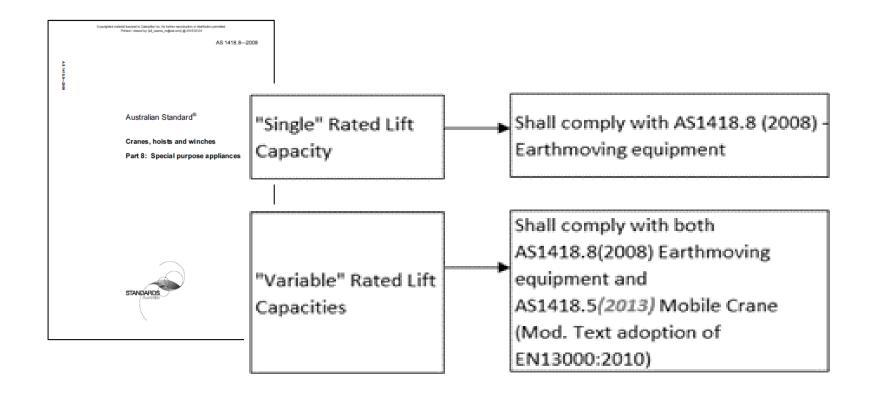
Purpose of CMEIG Paper

- Clarify main differences between main standards
- Update on previous CMEIG advisory
- Does NOT replace details contained in standards
- Ready quick reference
- Available on CMEIG website



CMEIG Paper Variable Load Lifting with Tracked Excavators

Variable Load Lifting – Tracked Excavators


- Relates to lifting freely suspended loads <u>as a secondary function</u> associated with the normal THEX applications:
 - lifting and moving pipes
 - unloading construction equipment
 - manoeuvring accessories associated with the equipment

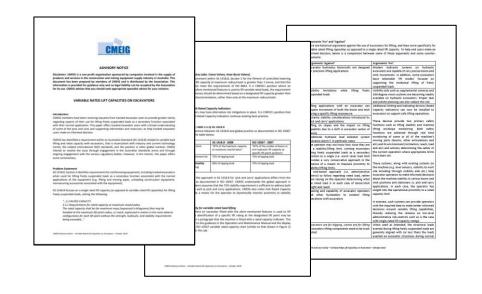
Burning Platform

- Source of ongoing inquiries to CMEIG members
 - AS 1418.8, Section 5

How This Plays Out Today...

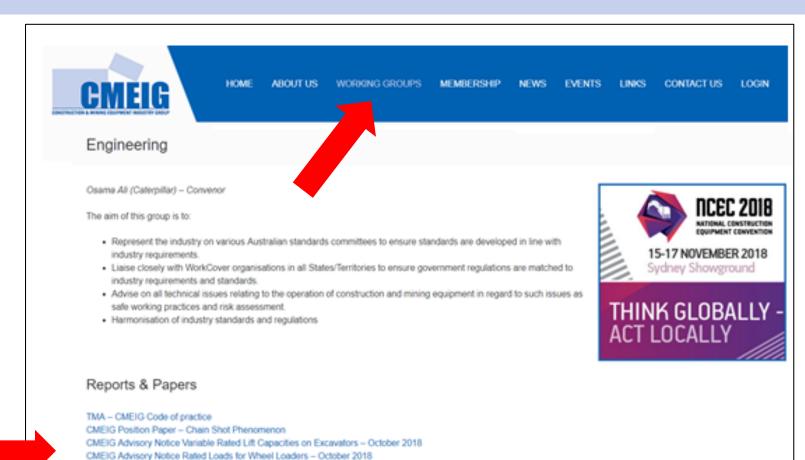
<u> </u>		1.5 m (5.0 ft)		3.0 m (10.0 ft)		4.5 m (15.0 ft)		6.0 m (20.0 ft)		7.5 m (25.0 ft)				
		F1	:17	F1	:17	F1	:17	F1	:17	F1	:17	Po	:17	m
7.5 m	kg											*2050	*2050	7.75
25.0 ft	lb											*4,550	*4,550	25.11
6.0 m	kg									*3250	2750	*1950	*1950	8.73
20.0 ft	lb											*4,300	*4,300	28.47
4.5 m	kg							*4450	4150	*4150	2750	*1950	1800	9.30
15.0 ft	lb							*9,700	8,900	*9,100	5,800	*4,250	3,950	30.44
3.0 m	kg			*10 700	*10 700	*6750	6250	*5300	3900	4150	2600	*2000	1600	9.55
10.0 ft	lb			*22,750	*22,750	*14,550	13,450	*11,400	8,350	8,900	5,550	*4,400	3,550	31,33
1.5 m	kg					*8500	5600	5800	3600	4000	2450	*2200	1550	9.53
5.0 ft	lb					*18,250	12,100	12,400	7,700	8,550	5,250	*4,750	3,450	31.26
Ground	kg			*6250	*6250	8800	5200	5550	3400	3900	2350	*2450	1650	9.22
Line	lb			*14,350	*14,350	18,850	11,200	11,850	7,250	8,300	5,000	*5,350	3,600	30.24
-1.5 m	kg	*5750	*5750	*9750	*9750	8600	5050	5400	3250	3800	2300	*2900	1850	8.59
-5.0 ft	lb	*12,850	*12,850	*22,100	21,150	18,450	10,900	11,600	7,000	8,200	4,900	*6,350	4,100	28.15
-3.0 m	kg	*9700	*9700	*13 800	10 100	8650	5100	5400	3250			*3700	2400	7.56
-10.0 ft	lb	*21,800	*21,800	*29,800	21,600	18,550	10,950	11,600	7,000			*8,200	5,300	24.68
-4.5 m	kg			*11 350	10 500	*7900	5300					*4050	3700	5.93
-15.0 ft	lb			*24,350	22,500	*16,900	11,400					*8,900	8,300	19.26

Detail	AS 1418.8 - 2008	ISO 10567 - 2007
Rated Hydraulic Capacity Limit	"87% of the hydraulic capacity at maximum reach/radius"	"87% of the smaller of boom or arm hydraulic lift capacity at specific lift-point positions"
Stationary Stability Requirement for Load Rating Condition	75% of tipping load	75% of tipping load
Pick and Carry (General) Stability Requirement for Load Rating Condition	66% of tipping load	75% of tipping load



Purpose of CMEIG paper

- Number of historical drivers for these differences in position
 - Advises on how new technologies can address some of these historical drivers
- AU Approach inconsistent with ROW



Questions / Comments?

- https://www.cmeig.com.au
 - Working Groups
 - Engineering

Submission from CMEIG – Preventing Fires on Mobile Plant Discussion Paper – 13 September 2018
CMEIG ADVISORY NOTICE Engine Emissions Regulation Development by the NSW EPA – 15 June 2018

CMEIG Presentation at the 28th JTLM - Incheon South Korea - 18 March 2018

CMEIG TMA Code of Practice - Radiocommunications & Electromagnetic Energy (EME) Labelling Exemption - 27 March 2018

All documents here are © Copyright Construction Mining and Engineering Industry Group 2000-2018. All rights reserved